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ABSTRACT

A theoretical investigation of gas flow inside a multilayer insulation system

has been made for the case of the broadside pumping process. A set of simultaneous

first-order differential equations for the temperature and pressure of the gas mixture

was obtained by considering the diffusion mechanism of the gas molecules through

the perforations on the insulation layers. A modified Runge-Kutta method was used

for numerical experiment. The numerical stability problem was investigated. It

has been shown that when the relaxation time is small compared with the time period

over which the gas properties change appreciably, the set of differential equations

can be replaced by a set of algebraic equations for solution. Numerical examples

were given and comparisons with experimental data were made.
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Nomenclature

A

a

a

c

k

L

M

m

N

n

p

Q, q,R

T

t

V

v

6

Subscri pts:

Superscripts:

area of one insulation layer (one side)

total area of perforation on one insulation layer

a' = (1 - c)A

perforation coefficient c = a/A

Boltzmann constant

number of interstitial spaces between insulation layers

number of kinds of absorbed gases plus 1

mass of a gas molecule or an integer

number of gas molecules

number density of gas molecules or an integer

pressure

outgassing rates, see Equations (4), (7), and (12)

temperature

time

vol ume

mean thermal velocity of gas molecules

number of degrees of freedom of a gas molecule

relaxation time

subscript c refers to quantities inside the vacuum chamber, f

to condition of the fuel tank, a to atmospheric condition, other

subscripts refer to quantities in a certain interstitial space

superscript 1 refers to the purge gas,' other superscripts refer

to a certain kind of gas molecules



1. Introduction

Recent developments in propulsion technology have stimulated interest in
**

the studyofmultilayerinsulationsystems for the fuel tank of a rocket booster. The

purpose of multilayer insulations is to eliminate heat conduction between the fuel

tank and the environment. It is then desirable that the spaces between the insula-

tion layers be maintained at low pressures. However, it is not practical to require

complete vacuum in the spaces between the insulation layers, although it would be

ideal in principle, for the reasons that complete vacuum is hardly attainable and

that when the pressure gets too low, deformation of the layers would cause solid

contacts, which in turn would induce heat conduction. It is therefore customary

in practice to require a pressure to be of the order of 10
- 4

torr. This low pressure

is usually achieved before launch from the ambient pressure by some pumping device.

There have been two pumping procedures in practice; namely, the broadside pumping

by which the direction of gas flow is perpendicular to the insulation layers, and

the edge pumping which causesthe gas to flow parallel to the layers. Experiments

of both evacuation procedures have been performed and results reported.l' 2 '3 The

present work is a theoretical analysis for the broadside pumping process.

In the case of broadside pumping, the insulation layers are perforated so

that gas molecules can go through small holes on the layers, resulting in streaming

gas motion perpendicular to the insulation layers. It is obvious that, in order to

minimize layer deformation and solid contacts, small pressure differentials across

the layers should be maintained during evacuation. This can be achieved by small

perforation, i.e., the total area-of the holes on an insulation layer is small com-

pared to the total area of that layer. If we further require that the diameter of a

single hole besmall or comparable to the distance between two successive layers,

there is the advantage of uniformity of gas motion, which renders convenience dur-

ing operation.

A multilayer insulation system consists of a large number (in the order of 102 ) of

extremely thin sheets of low thermal conductivity and lightweight materials, kept

parallel to one another with a total thickness of about 1".
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2. Formulation

Consider a fuel tank of simple geometry wrapped with multilayer insulation

and situated inside a vacuum chamber° Consider the broadside pumping process

and assume that the perforation areas are small. Then, a gas molecule in any inter-

stitial space between two successive layers will, on the average, collide many times

with the walls or with some other gas molecules in that interstice before getting

through a hole to a neighboring interstice. Thus, it is plaussible to assume that the

gas in any interstitial space is in thermal equilibrium with the temperature and

pressure pertinent to that interstice, and the motion of the gas is simply a diffusion

process.

Consider the gas inside the insulation system as a mixture of a certain kind

of purge gas and a number of different kinds of gases originally absorbed in the in-

sulation materials. Let A1 be the total area of the outermost insulation layer (one

side), and c1 the perforation coefficient of the same layer (the ratio of the total

perforation area on the first layer to A 1), and so on. Let V 1 be the volume of

the interstice between the first and the second insulation layers, and N 1 the number

of molecules in V 1, V2 the volume of the interstice between the second and the

third insulation layers, and N2 the number of molecules in V2 , and so on. Since

the gases in any interstice are in thermal equilibrium, each component gas has a

Maxwellian distribution with its local density and the common local temperature.

From the kinetic theory of gases, we have, for the gases in the i th interstice,

dN. a . ,

d t 4 ni -1i

+ ( v; 1 n v)) + (a + a' q (9)
=-, M . (1)

i = 1,2, ,L ; 1,2, M (1)
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M M

dt ( iTEl N;) a4 E~ k 60) n -) vGi)vTln )vGTi)
4 j- 1

M

j=1

i 1, 2, - - -, L - 1. (2)

where a = c; A. , a'. (1 - c.)Ai, k is the Boltzmann constant, 6 the num-

ber of degrees of freedom of motion of a gas molecule, n., v. and T. are the number

density, the mean thermal velocity and the temperature of the gas molecules in the

i th interstice, respectively0 The superscript j refers to the purge gas if j = 1,

or the absorbed gas of kind j otherwise. The number of interstitial spaces is L,

and the number of kinds of the absorbed gases is (M-1) so that

M M

n nI and N NZ where N = V nG) (3)
j=1 j=l

Finally, O (j = 1)

we= (4)

number of outgassing molecules, of kind j from the

walls binding the i th interstice, per unit area and

time (j 1).

Equations (1) state the conservation of mass and Eqs. (2) the conservation of energy.
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Since the L th interstice is nect to the fuel tank, we may assume that

aL + 1 = O and TL = Tf, where Tf is the temperature of the fuel tank. Since inter-

stice 1 is the outermost, denoting the number densities, the mean thermal velocities

and the temperature of the molecules in the vacuum chamber by n (i), v ( ) and
c c

T, respectively, we have n ( n ), v v ) and T =T Notice that
c o c o c j c

as the volume of the vacuum chamber is very large, n \ / 1) are vanishingly

small compared to n (1) at all times and we may assume that n = 0 (j $1).
c c

By making this assumption, v (j i 1 ) become meaningless and they drop out from

Eqs. (1)and (2)automatically. Therefore, in Eqs. (1)and (2), we use

aL+l 1 Tf 0 , T T , T =T v ) (1)

(5)

n ( (=n ) and n )=0 ( j1)
0 C 0

Following pi = n. k T., where pi is the pressure in the ith interstice,

we may assume that

M

pi ) = n j k Ti so that Pi = Pi ) (6)

which is plaussible when the pressure is not too high.

Using Eqs. (3) and (6), and if the outgassing rates are expressed in the

customary units of pressure times volume per unit area and time denoted by

Q.*() = kT. q(i) (7)

then, Eqs. (1), (2), and (5) can be written as
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where p ) is the chamber pressure due to the purge gas.

The mean thermal velocities are given by

1/2

·v.a)= ( I)' i 0 , 1 - -,L;j =1, 2, -- M. (11)

where m( i ) is the mass of a molecule of the j th kind.

To obtain a solution to the problem, the outgassing rates Q. a) must be

known a priori, usually determined experimentally. Outgassing is a process

in which gas molecules originally adsorbed or absorbed in a solid material leave

that material under reduced pressure or elevated temperature. The outgassing rate

of the insulation layers depends on the material and preconditioning of the layers,

the temperature, pressure, time and the kinds of absorbed gases. For a specific

material and preconditioning and a specific absorbed gas, Q. ( ) =Q. (T, p, t).

Around the room temperature range, there is not outgassing at atmospheric or higher

pressures. Outgassing occurs when the background pressure is reduced considerably

below the atmospheric pressure. The outgassing rate increases as the pressure de-

creases, and attains apprecible values only at very low pressures. However, in

very low pressure ranges, the outgassing rate is a weak function of pressure. There-

fore, its dependence on the pressure may be approximated by

iQ. ( Pa R ( T, ) (12)

M

where pi = . p=) ' p is the atmospheric pressure and RO) are the out-

gassing rates at extremely low pressures.

The absorbed gases are mainly water vapor, with small amounts of CO2 and

N2 (Ref. 7).
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The initiaj conditions associated with the system of Equations (8) and (9)

are prescribed according to a specific situation encountered. Usually the evacuation

process starts with atmospheric pressure inside the insulation system. In this case,

the initial conditions can be written as

P; L1(o ) = Pa P()i (O) = 0(i 1),i : 1, 2, - -L
(13)

T.(O)T (i), i = 1, 2, --- , L -1.

Now, with the (M + 1) L - 1 initial conditions given by Eqs. (13) or pre-

scribed otherwise and the outgassing rates Q ( known, and using Eqs. (10) and

(11), Eqs. (8) and (9) constitute an appropriate set of (M + 1) L - 1 simultaneous

first order differential equations for the same number of unknown functions of time,

namely, T. (t), i = 1, 2, --- L and pi(I) (t), i --- , L;.i 1, -- -,M.

In some engineering applications, e.g., the Apollo Telescope Mount insula-

tion, the temperature is quite uniform across the entire insulation system, and the

gas flow inside the system is nearly isothermal. In this case, the problem reduces

to the solution of Eqs. (8) with Eqs. (1.0) and (11), and the initial conditions (13),

when all temperatures are set equal to a constant.
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3. Numerical Analysis

In a multilayer insulation system, the number L usually is of the order of

10 . Thus, the governing Eqs. (8) and (9) consist of a large number of first order

differential equations which are non-linear and coupled. The analytical solution

of this system of equations can hardly be obtained, one therefore uses a direct nu-

merical method for its solution.

For simplicity in numerical experiments, we took an isothermal case, and

assumed water vapor was the only absorbed gas present (M = 2) . Furthermore,

a hypothetical R (2) C(T , t) and chamber conditions were used. When the temperature

is constant, the energy equations (Eqs. (9) )are not needed, and the problem reduces

to the solution of Eqs. (8) with initial conditions (13). In the process of numerical

computation, however, the problem of instability occurred. A numerical program
8using a modified Runge-Kutta method has been set up for this initial value problem.

Computer experiments on this scheme showed that the system was stable when the

values of T-c) = (4 V /a ) ( m 
(

) /8 k T ) 1/2, which have a dimension of

the time, were large. However, in order to establish numerical stability for small

values of T. () the step sizes of integration had to be so small that a solution could

not be obtained with a reasonable length of computer time. Since in ordinary ap-

plications the values of Tq.) are very small, we need to seek some alternative or

approximation to the system of Eqs. (8), (9) and (13).

For the case j = 1, Eqs. (8) can be written as

dp. p d T. P1) (1) (1) (1)
di dT i _I

- -r - - +r --
dt T. dt i - +1 T _ - i+T .-

, i-I i + I ,p

(14)

where 'i = T (ai, Ti)= (4V. /a. ) ( rm (1) / T(k T 1/2'

T,+, T(ai+,, T i + 1)and Tr = T-(ai+
1

, Ti) have a dimension of the time,

and where r. = T. /T. and r. + 1 = T. / T. are dimensionless quantities

or order 1.
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Let the largest of all the four T's5 defined above be T . Define the non-
m

dimensional temperatures and pressures as T'. =T. /Tr, where T is a reference
I =Mr

temperature (say the room temperature), and p = p(J/ p. Let T be the time

period over which T'. and pi' change appreciably, and define the non-dimensional

time as t' =t/Te so that d T'. /dt' and dp'i /dt' have their magnitudes of order

1.

In terms of T'., p'. and t', Eqs. (14) can be written as

T dp dT'

eTi dt' P i d t'
e

Ti [r, p I i+ 1T' [r.- si_1 P i (s. + r. Si+1 p+iS] (15)

where s. = Tm /T. etc., are dimensionless quantities of order 1.
l m l

We see that T is a measure of the relaxation time. If T < T< , the
m m e

two terms on the left hand side of Eqs. (15) are vanishingly small compared to any

term on the right hand side, since the magnitudes of the two terms inside the brackets

on the left hand side are of order 1. In this case, component 1 of the gas mixture

in the i th interstice is "quasi-steady", which means that at any instant component

1 in interstice i can be considered instantaneously steady and the derivative terms

in its governing equation can be dropped. This argument applies to all other com-

ponents of the mixture in every interstice, i.e., applies equally well to each

equation of Eqs. (8) for cases j X1 and Eqs. (9) individually0

As a final step towards completion of this argument, let 1 < m < L and

1 < n < M be two integers such that T (n) is the largest of all T. (j) defined by
m

)1/2m(16)
T.)= 4V./a.) (TT m ( j /8kT.) (16)

9



Then, the relaxation time of the gas mixture in the entire insulation system T
s

is bounded by L T n, i.e.,
m

T < L T (n) (17)
S - m

Denoting the time period over which the properties of the gas mixture change

appreciably by T t, we can drop all the derivative terms in Eqs. (8) and (9)

simultaneously if

T or L T (n) << T
s m t

(18)

_ Thus, this system of differential equations reduces to a set of algebraic ___

___a s___ __. - _- equa ti ons- -_ _ _ 

Now, for ordinary engineering applications, T is of the order 10 2
s

10 sec., while qt is measured by hours. Therefore, condition (18) is usually

fulfilled, and Eqs. (8) and (9) reduce to

aQ ) 6)

4 (a, +a',+) Q + a. PT. i TiI , ~~-1

(1)
T.

I

(0)

+i+ T i+l i+l t

(O)vi -i-1

p )
T.
T.

I

v. 6))

v (i)) = 0

(19)

- pi v.i )
I I

M

+ ai+ 1
j =1

60) (Pi ) v -) - p) v. ))
pi + I - P 

(20)

10

4 6) (a'. + a'i+l) Qi ) +a
j =1

b6) (pi)M

j=1
vG0)
Vi-1

= 0

i = 1 , 2, - - -, L; j = 1 , 2, - - -, M.

i = 1 , 2, - - -, L - 1.



As Eqs. (19) and (20) are algebraic equations, there is no need for the pre-

scription of initial conditions.

To obtain the solution for a particular problem, we first choose a sequence

of the time (t1 , t2 , --- , tn). The solution at any chosen time, say tl, is ob-

tained by solving Eqs. (19) and (20) with the chamber conditions and fuel tank

temperature at t1 (see Eqs. (10) )and R( ) (T. tl) (see Eq. (12) )which are

pertinent to that problem. After we finish with the time sequence, we have the

pressures and temperatures in all the interstices of the insulation system as functions

of the time. If the process is isothermal, one only has to solve Eqs. (19) with the

relevant chamber conditions and outgassing rates.

11



4. Numerical Results and Comparison with Experimental Dala

For the purpose of comparison with experiment, we choose examples,the

experimental data of which are available°

A circular disk of 1" thick and 6" in diameter is composed of a variety of

numbers of insulation sheets of crinkled single-aluminized mylar. The edge of the

disk is sealed with a solid insulation sheet (i.e., without perforation). The last

layer (the back sheet) is also solid, but the rest of the insulation layers are per-

forated with a perforation coefficient equal to 0.0138. The perforation holes are

0.09375" in diameter. The distance between two adjacent holes is 0.707" center

to center.

The disk is placed in a large vacuum chamber. The chamber and hence

the multilayer system (i.e., the disk) are maintained at room temperature all the

time, so it is an isothermal process. At the beginning of the experiment, the

vacuum chamber and the multilayer system are filled with nitrogen (purge gas), and

the pressure inside each interstitial space between two successive insulation layers

and the pressure in the chamber are atmospheric. The chamber is then evacuated.

The pressure in the chamber and the pressure in the last interstice of the insulation

system are recorded as time proceeds.

The outgassing rates, R© ) as functions of the time, of the insulation sheets

were obtained before hand by separate experiments. The outgas components are

mainly water vapor, with small amounts of nitrogen and carbon dioxide. For sim-

plicity, we assume only one kind of outgas (water vapor) present, i e., only R( 2 )

has non-zero values. The outgassing rate R(2) (t) of crinkled single-aluminized

mylar is shown in Fig. 1.

In our analysis, we use a set of R(2) (t) values at different times successively.

To obtain the solution at any chosen time, say tl, we use the values of R(2)(tl)

and the chamber pressure p (tl) in Eqs.( 19) Thus an appropriately chosen set
of R(2)(t)and Pc (t) will result in a solution of the P.(t), the pressure history of

the gas mixture inside the multilayer insulation system. However, the R (t) values

are available only up to t = 48 hours, thus our computations have to stop there.

12



Theoretical computation includes the pressures P.(t) inside each interstice,

while only the pressure in the last interstice PL(t), i.e., the backside pressure, is

experimentally measured. Therefore, only the comparison for PL (t) can be made.

Comparisons of the theoretical PL (t) and the experimental data are presented in

Figures 2 to 6.

13



5. Conclusions

First of all, it should be noted that the comparison between the computed

and measured values of the PL's presented in Figs. 2 to 6 cannot be taken seriously,

since it is known that the experiment for the determination of the outgassing rate

was not appropriately performed, thus the values of R(2 ) (t) presented in Fig. 1,

on which our calculation was based, is not reliable .o Nevertheless, Figs. 2 to 6

serve to show a qualitative comparison and to indicate some possible experimental

errors.

It can be seen from the figures that at early times the computed PL is

much higher than the experimental values. However, the computed and the mea-

sured values are coming closer and closer toward each other when time proceeds,

and good agreement is established after reasonably large time. Since the effect

of preconditioning on the outgassing rate is likely to be a weak function of time

when t is large, one probable and important course of experimental discrepancy

would arise from different preconditionings of samples, i.e., the samples for the

measurement of P (t) and the sample for the determination of R(2)(t) were dif-

ferently pre-treated. Another source of error would be the contamination of

equipments inside the vacuum chamber.

It is believed that agreement between the theory and experiment can be

achieved if, with special attention to preconditioning, a set of consistent ex-

periments is performed.

~At the time of the writing of this ireport, the Marshall Space Flight Center is
planning to reconduct the outgassing rate experiment.
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